Modelling the impact of environmental change on infectious diseases

Rachel Lowe Assistant Professor and Royal Society Dorothy Hodgkin Fellow London School of Hygiene & Tropical Medicine, London UK Barcelona Institute for Global Health, Barcelona, Spain

18th International Congress on Infectious Diseases, 3 March 2018, Buenos Aires, Argentina

Environmental change and health impacts

Global Framework for climate services

- Transform climate information into relevant, usable decisionsupport tools.
- Manage the risks of environmental change.

Key components

- Partnership, Research, Product development & delivery
- Evaluation, Capacity building
- Co-developed by health and climate professionals.

Lowe *et al*. Dengue EWS Lowe *et al*. Capacity Building

From global observations to local interventions

The Economist

3

Early warning and response systems

- Early warning systems that account for multiple disease risk factors can help to implement timely control measures.
- Seasonal climate forecasts provide an opportunity to anticipate epidemics several months in advance.
- **Bayesian model framework** used to make probabilistic statements about future disease risk (e.g. probability of an epidemic during a mass gathering or natural disaster)?

Time

Dengue in Brazil

- Model framework developed in collaboration with European-Brazilian climate and health institutions.
- **Data** (dengue, climate, cartographic, demographic, socio-economic) to formulate model, produce probabilistic dengue predictions for >550 microregions.
- Optimum trigger alert thresholds determined for scenarios of medium-risk and high-risk of dengue, according to incidence alert levels defined by the Ministry of Health.

TODOS CONT

Integrated: Prob. of most likely precip, tercile (%)

Model framework

Problem lack of data to model disease system

Solution Bayesian hierarchical mixed model - add extra level uncertainty via random effects

Amazon

3 -1.0

Probabilistic dengue forecast

Dengue risk forecast South East Brazil during epidemic February-April 2008. Category boundaries: 100 and 300 cases per 100,000 inhabitants.

LONDON SCHOOL of HYGIENE STROPICAL MEDICINE

Lowe et al., 2013, Stat Med

Real-time dengue forecast for Brazil

- Early warning framework applied to predict dengue risk 3 months ahead of World Cup in Brazil.
- Category boundaries: 100 (medium risk) and 300 (high risk) cases per 100,000 inhabitants.

Lowe et al., 2014, Lancet Infect Dis

Policy and outreach implications

- Complimented the national dengue control programme World Cup action plan.
- Results disseminated to the general public & travellers (BBC, NHS, ECDC risk assessments).
- Case study in WHO/WMO and UNISDR publications.

Probability of observing correct category

Lowe et al., 2016, eLife

Comparison of forecast to null model

Comparison of hit rate and false alarm rate for forecast model (blue) and seasonal average null model (orange) for June 2000-2014.

2014 event

hit rate: 57% (33%)

false alarm rate (type I error rate): 23% (13%)

Lowe et al., 2016, eLife

miss rate (type II error rate): 43% (67%)

From evidence to application to evaluation

Rachel Lowe^{1*}, Caio AS Coelho², Christovam Barcellos³, Marilia Sá Carvalho³, Rafael De Castro Catão^{1,4}, Giovanini E Coelho⁵, Walter Massa Ramalho⁶, Trevor C Bailey⁷, David B Stephenson⁷, Xavier Rodó^{1,8}

Dengue and other arboviruses in southern costal Ecuador

- El Oro key arbovirus surveillance site
 - high burden of dengue
 - seasonal transmission (hot, rainy season)
 - co-circulation DENV1-4
 - recent introduction of CHIKV & ZIKV
- DENV epidemics associated with El Niño climate events
- Local social-ecological risk factors
 - poor housing conditions
 - interruptions in the piped water supply
 - water storage behaviour

El Niño and dengue in Ecuador

- El Niño a robust predictor of dengue outbreaks in El Oro province.
- Seasonal climate forecasts more skillful during El Niño events.
- Forecasts of temperature, rainfall and El Niño could provide dengue early warnings.

El Niño and rainfall association (JFM, 2 mon lag)

Stewart-Ibarra & Lowe, 2013, AJTMH

On February 26, 2016, over 170 mm of rain fell in 10 hours, and coincided with high tides, causing the worst flooding since the 1997-1998 El Niño.

Climate and dengue data and model

Cooler and drier than usual ightarrow less dengue

Warmer and wetter than usual \rightarrow more dengue

 $y_t \sim NegBin(μ_t, κ)$

 $\log(\mu_t) = \log(p) + \log(r_t)$

Relative risk Annual Climate Inter-annual cycle variables variation

Lowe et al., 2017 Lancet Planet Health

Incorporate climate forecast uncertainty

- 24 ensemble members: precipitation and min. temperature in 2016
- Ensemble spread included in Bayesian probability forecasts

Current practice: average over last 5 years

Climate-driven dengue forecast, Machala 2016

84% chance of exceeding threshold of 95% upper CI for previous five years

Peak occurred earlier than expected

Timing: climate forecasts **Magnitude**: correct misreporting

Lowe et al., 2017 Lancet Planet Health

Reported dengue: passive surveillance

Corrected dengue: using active surveillance

Stewart-Ibarra et al., 2018 AJTMH

Active surveillance data improves benchmark estimates and forecasts

Correct for misreporting due to introduction of chikungunya in 2015

- ~70% of dengue cases actually chikungunya in summer 2015
- Misreporting doubles the estimate of seasonal averages

Key findings

- First demonstration of the use of long-lead seasonal climate and El Niño forecasts in a dengue early warning model for Ecuador.
- This study adds value by using
 1) real-time climate forecasts for long-lead dengue predictions
 2) active surveillance data to correct for misreporting.
- International and interdisciplinary team key in co-designing prototype.
- Global climate model output transformed to a tailored health risk indicator, to support decision makers at the local level.

Explosive emergence of Zika virus

Lowe et al., 2018 Int. J. Env. Res. Public. Health

Capacity building

- School on Modelling Tools and Capacity Building in Climate and Public Health.
- Tools to access, visualise and analyse environmental datasets.
- Transform data to input health risk models.
- Participants: early career scientists, PhD students, public health officials.

The Abdus Salam International Centre for Theoretical Physics

Petropolis, Brazil, Jul 2015

Thank you for your attention!

Questions?

rachel.lowe@lshtm.ac.uk

rachel.lowe@isglobal.org

@drrachellowe

