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Environmental change and health impacts
Global Framework for climate services
• Transform climate information into relevant, usable decision-

support tools. 
• Manage the risks of environmental change.

Key components
• Partnership, Research, Product development & delivery
• Evaluation, Capacity building

• Co-developed by health and climate professionals.
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Lowe et al. Dengue EWS
Lowe et al. Capacity Building



From global observations to local interventions
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Early warning and response systems

• Early warning systems that account for multiple 
disease risk factors can help to implement timely 
control measures. 

• Seasonal climate forecasts provide an opportunity 
to anticipate epidemics several months in advance.

• Bayesian model framework used to make 
probabilistic statements about future disease risk 
(e.g. probability of an epidemic during a mass 
gathering or natural disaster)?
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Dengue in Brazil
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• Model framework developed in collaboration with 
European-Brazilian climate and health institutions.

• Data (dengue, climate, cartographic, demographic, 
socio-economic) to formulate model, produce 
probabilistic dengue predictions for >550 microregions.

• Optimum trigger alert thresholds determined for 
scenarios of medium-risk and high-risk of dengue, 
according to incidence alert levels defined by the 
Ministry of Health.
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Problem lack of data to model disease system
Solution Bayesian hierarchical mixed model - add extra level uncertainty via random effects

yst ~ NegBin(μst, κ)

log(μst) = log(est) + α + αs'(s) + Σβjxjst + Σγjwjst + δzst + φs + υs + ωt'(t) + ωt'(t),s'(s) .

Current cases Random month effects 
by ecological zone

Spatially (un)structured random effects

Climate and non-
climate effects

Random intercept 
for ecological zone

Offset:
expected cases

Model framework

Counts of cases in 
space and time



Dengue risk forecast South East Brazil during epidemic February-April 2008. 
Category boundaries: 100 and 300 cases per 100,000 inhabitants.

Forecast Observation

Lowe et al., 2013, Stat Med

Probabilistic dengue forecast
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Lowe et al., 2014, Lancet Infect Dis

Real-time dengue forecast for Brazil
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• Early warning framework applied to predict dengue risk 3 months ahead of World Cup in Brazil.
• Category boundaries: 100 (medium risk) and 300 (high risk) cases per 100,000 inhabitants.



Policy and outreach implications
• Complimented the national dengue control programme World Cup action plan.
• Results disseminated to the general public & travellers (BBC, NHS, ECDC risk assessments). 
• Case study in WHO/WMO and UNISDR publications.
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Probability of observing correct category
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Low Medium High

Lowe et al., 2016, eLife



Comparison of forecast to null model
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Comparison of hit rate and false alarm rate for forecast model (blue) and
seasonal average null model (orange) for June 2000-2014.

2014 event 
hit rate: 57% (33%)

false alarm rate (type I error rate): 23% (13%) 
miss rate (type II error rate): 43% (67%) Lowe et al., 2016, eLife



From evidence to application to evaluation
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Formulate

Develop

Apply

Evaluate



Dengue and other arboviruses 
in southern costal Ecuador

• El Oro key arbovirus surveillance site
• high burden of dengue
• seasonal transmission (hot, rainy season)
• co-circulation DENV1-4
• recent introduction of CHIKV & ZIKV

• DENV epidemics associated with El 
Niño climate events

• Local social-ecological risk factors 
• poor housing conditions
• interruptions in the piped water supply
• water storage behaviour 
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El Niño and dengue in Ecuador

14

• El Niño a robust predictor of dengue 
outbreaks in El Oro province.

• Seasonal climate forecasts more skillful 
during El Niño events.  

• Forecasts of temperature, rainfall and El Niño 
could provide dengue early warnings.

Stewart-Ibarra & Lowe, 2013, AJTMH

El Niño 
parameter 
estimate

El Oro 

El Niño and rainfall association (JFM, 2 mon lag)
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On February 26, 2016, over 170 mm of rain fell in 10 hours, and coincided 
with high tides, causing the worst flooding since the 1997-1998 El Niño.



Climate and dengue data and model
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Cooler and drier than usual à less dengue 

Warmer and wetter than usual à more dengue

yt ~ NegBin(μt, κ)

log(μt) = log(p)  +  log(rt)

log(rt) = α  +  f(βt'(t)) +  Σγjxjt +  δT'(t)

Relative 
risk

Annual 
cycle

Climate 
variables

Inter-annual 
variation

Lowe et al., 2017 Lancet Planet Health



Incorporate climate forecast uncertainty
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• 24 ensemble members: precipitation and min. temperature in 2016
• Ensemble spread included in Bayesian probability forecasts

Precipitation Temperature



Current practice: average over last 5 years
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Climate-driven dengue forecast, Machala 2016
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84% chance of 
exceeding 
threshold of 
95% upper CI 
for previous 
five years
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Peak occurred earlier than expected
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Lowe et al., 2017 Lancet Planet Health

Timing: climate forecasts 
Magnitude: correct misreporting



Reported dengue: passive surveillance 
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Corrected dengue: using active surveillance
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Active surveillance data improves benchmark 
estimates and forecasts
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Correct for misreporting due to introduction of chikungunya in 2015

• ~70% of dengue cases actually chikungunya in summer 2015
• Misreporting doubles the estimate of seasonal averages 

330 cases
160 cases

CORRECTED UNCORRECTED
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Key findings
• First demonstration of the use of long-lead seasonal climate and 

El Niño forecasts in a dengue early warning model for Ecuador.

• This study adds value by using
1) real-time climate forecasts for long-lead dengue predictions
2) active surveillance data to correct for misreporting. 

• International and interdisciplinary team key in co-designing 
prototype.

• Global climate model output transformed to a tailored health 
risk indicator, to support decision makers at the local level. 
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Explosive emergence of Zika virus

25Lowe et al., 2018 Int. J. Env. Res. Public. Health



Capacity building
• School on Modelling Tools and Capacity Building in 

Climate and Public Health.
• Tools to access, visualise and analyse

environmental datasets. 
• Transform data to input health risk models.
• Participants: early career scientists, PhD students, 

public health officials. 
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Petropolis, Brazil, Jul 2015



Thank you for your attention!

Questions?

rachel.lowe@lshtm.ac.uk

rachel.lowe@isglobal.org

@drrachellowe
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