

Options for treating multidrug resistant falciparum malaria

Elizabeth Ashley, Myanmar Oxford Clinical Research Unit

March 2018

Overview

- 1. Status of drug resistance in *Plasmodium falciparum*
- 2. Treatment options
 - a) New drugs?
 - b) Longer courses?
 - c) Triple combinations?

Artemisia annua

1. Current status of Artemisinin and partner drug resistance

Coartem

CORRESPONDENCE

Evidence of Artemisinin-Resistant Malaria in Western Cambodia

• 2008: Noedl et al. for the ARC1 Consortium; NEJM

The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Artemisinin Resistance in Plasmodium falciparum Malaria

• 2009: Dondorp et al.; NEJM

ARTICLE

2014

doi:10.1038/nature12876

A molecular marker of artemisininresistant *Plasmodium falciparum* malaria

Frédéric Ariey^{1,2}[†], Benoit Witkowski³, Chanaki Amaratunga⁴, Johann Beghain^{1,2}[†], Anne-Claire Langlois^{1,2}, Nimol Khim³, Saorin Kim³, Valentine Duru³, Christiane Bouchier⁵, Laurence Ma⁵, Pharath Lim^{3,4,6}, Rithea Leang⁶, Socheat Duong⁶, Sokunthea Sreng⁶, Seila Suon⁶, Char Meng Chuor⁶, Denis Mey Bout⁷, Sandie Ménard⁸[†], William O. Rogers⁹, Blaise Genton¹⁰, Thierry Fandeur^{1,3}, Olivo Miotto^{11,12,13}, Pascal Ringwald¹⁴, Jacques Le Bras¹⁵, Antoine Berry⁸[†], Jean-Christophe Barale^{1,2}[†], Rick M. Fairhurst⁴*, Françoise Benoit-Vical^{16,17}*, Odile Mercereau-Puijalon^{1,2}* & Didier Ménard³*

kelch13

ARTICLE

2014

doi:10.1038/nature12876

A molecular marker of artemisininresistant *Plasmodium falciparum* malaria

Frédéric Ariey^{1,2}[†], Benoit Witkowski³, Chanaki Amaratunga⁴, Johann Beghain^{1,2}[†], Anne-Claire Langlois^{1,2}, Nimol Khim³, Saorin Kim³, Valentine Duru³, Christiane Bouchier⁵, Laurence Ma⁵, Pharath Lim^{3,4,6}, Rithea Leang⁶, Socheat Duong⁶, Sokunthea Sreng⁶, Seila Suon⁶, Char Meng Chuor⁶, Denis Mey Bout⁷, Sandie Ménard⁸[†], William O. Rogers⁹, Blaise Genton¹⁰, Thierry Fandeur^{1,3}, Olivo Miotto^{11,12,13}, Pascal Ringwald¹⁴, Jacques Le Bras¹⁵, Antoine Berry⁸[†], Jean-Christophe Barale^{1,2}[†], Rick M. Fairhurst⁴*, Françoise Benoit-Vical^{16,17}*, Odile Mercereau-Puijalon^{1,2}* & Didier Ménard³*

*kelch*13 e.g. C580Y

Partner drug resistance (ACT failures)

- DHA-piperaquine failure rates of ~ 50% in Cambodia and Viet Nam
- AS-MQ failure rates of ~ 20% on the Thai-Myanmar border

Thanh et al. Malar J (2017) 16:27 DOI 10.1186/s12936-017-1680-8

Malaria Jour

Open Acc

RESEARCH

Rapid decline in the susceptibility of *Plasmodium falciparum* to dihydroartemisinin–piperaquine in the south of Vietnam

Ngo Viet Thanh¹, Nguyen Thuy-Nhien^{1*}, Nguyen Thi Kim Tuyen¹, Nguyen Thanh Tong¹, Nguyen Thuy Nha-Ca¹, Le Thanh Dong², Huynh Hong Quang³, Jeremy Farrar^{1,4}, Guy Thwaites^{1,4}, Nicholas J. White^{4,5}, Marcel Wolbers^{1,4} and Tran Tinh Hien^{1,4}

Clinical Infectious Diseases

Declining Efficacy of Artemisinin Combination Therapy Against *P. Falciparum* Malaria on the Thai–Myanmar Border (2003–2013): The Role of Parasite Genetic Factors

Aung Pyae Phyo,^{1,2} Elizabeth A. Ashley,^{1,2,3} Tim J. C. Anderson,⁴ Zbynek Bozdech,⁵ Verena I. Carrara,^{1,3} Kanlaya Sriprawat,¹ Shalini Nair,⁴ Marina McDew White,⁴ Jerzy Dziekan,⁵ Clare Ling,^{1,2,3} Stephane Proux,¹ Kamonchanok Konghahong,¹ Atthanee Jeeyapant,³ Charles J. Woodrow,^{2,3} Mallika Imwong,³ Rose McGready,^{1,2} Khin Maung Lwin,^{1,3} Nicholas P. J. Day,^{2,3} Nicholas J. White,^{2,3} and Francois Nosten^{1,2}

¹Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand; ²Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, United Kingdom; ³Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; ⁴Department of Genetics, Texas Biomedical Research Institute, San Antonio; and ⁶Division of Molecular Genetics & Cell Biology, School of Biological Sciences, Nanyang Technological University, Singapore

Can it be stopped?

THE PATH OF CHLOROQUINE RESISTANCE

Malaria parasites resistant to chloroquine swept out of the Mekong region and spread around the world. So far, artemisinin hasn't followed that path, and researchers are debating the likelihood it will.

Science 2016 doi:10.1126/science.aaf9947

Can it be stopped?

THE PATH OF CHLOROQUINE RESISTANCE

Malaria parasites resistant to chloroquine swept out of the Mekong region and spread around the world. So far, artemisinin hasn't followed that path, and researchers are debating the likelihood it will.

Science 2016 doi:10.1126/science.aaf9947

"Popping" or spread?

- Haplotype analysis has shown *independent emergence* of the same artemisinin-resistance mutations in different geographical areas in Southeast Asia,
 - e.g. C580Y emerged once in the east (Cambodia/Vietnam) and once in the West (Myanmar)

Takala-Harrison, JID 2015

Super-malaria?

2017

- Transnational spread of multidrug resistant *P.falciparum kelch*C580Y lineage
 - Detected first in Pailin in 2008
 - It later acquired piperaquine resistance and spread east.
 - Now found in Cambodia, Thailand, Laos, Vietnam

Imwong et al. Spread of a single multidrug resistant malaria parasite lineage (PfPailin) to Vietnam; LID, 2017

2. Options for treatment (endemic countries)

- a. New drugs?
- b. Recycle old drugs
- c. Longer ACT courses
- d. Triple ACTs

a. New antimalarial drugs

- Success rates for drugs in Phase 2 are 34-60%
- Success rates for drugs in preclinical phase are 8%

(Burrows et al. Malaria Journal 2017)

Leading candidates in clinical development

- Artefenomel+ferroquine
- Lumefantrine + KAF-156
- Cipargamin

Artefenomel+ferroquine

- Artefenomel (previously OZ439) a long-acting synthetic ozonide
- Ferroquine(FQ)- long-acting aminoquinoline (half-life 16 days)
- Targeting single dose treatment
- Multicentre dose-finding phase 2b study (NCT02497612) is underway

Artefenomel+ferroquine

- Artefenomel (prev synthetic ozonide
- Ferroquine(FQ)- lo (half-life 16 days)
- Targeting single d
- Multicentre dose-(NCT02497612) is underv.

How much crossresistance is there between artefenomel and artemisinin derivatives?

Lumefantrine-KAF156

- KAF156: highly potent imidazolopiperazine which has multistage activity
- Lumefantrine: an arylaminoalcohol already in widespread use combined with artemether
- Phase 3 dose-finding study ongoing in West Africa (NCT03167242)
- Targeting single dose treatment/radical cure

Cipargamin

- Spiroindolone
- PfATP4 inhibitor
- Potent, long-acting blood schizonticide
- Dose-escalation safety study is recruiting in Mali (NCT03334747) with a special focus on hepatotoxicity after signals in earlier studies

b. Prolonged ACT courses

- Artemisinin derivatives still work- just much less well
 - Non-response to treatment not described
- Giving longer courses can improve efficacy

TRAC study; NEJM 2014

Day 42 Efficacy of 6 day treatments

Site	Treatment	Duration (days)	N recurrences/ N patients	PCR-corrected efficacy [95% CI] @ D42
Cambodia- Pailin	AS4 + DP	6	2/100	97.7 [90.9-99.4]
Viet Nam- Binh Phuoc	AS2+DP	6	0/60	100 [93.2-100]
Viet Nam- Binh Phuoc	AS4+DP	6	0/60	100 [93.0-100]
Laos- Attapeu	AS4+AL	6	2/60	100 [93.5-100]
Myanmar- Shwe Kyin	AS4+AL	6	0/40	100 [87.9-100]

b. Triple Artemisinin-based combinations

DHA-piperaquine and mefloquine

Artemether-lumefantrine and amodiaquine

- Fairly well matched elimination kinetics
- Opposing resistance selection effects?

TRAC 2 study: RCT (120 patients/site)

Aims

- 1. Update on status of artemisinin and partner drug resistance
 - i. Phenotypic (parasite clearance half-life > 5h)
 - ii. Genotypic (*kelch*13, plasmepsin, pfmdr1)
- 2. Efficacy of ACTs and triple-ACTs
- 3. Safety and tolerability of triple ACTs

Key inclusion & exclusion criteria

Inclusion criteria

- Male or female, aged from 6 months to 65 years old.
- Symptomatic acute uncomplicated *P. falciparum* malaria, with asexual parasite density of 5,000 to 200,000/µL
- Written informed consent

Exclusion criteria

- Severe/complicated malaria
- Haematocrit < 25% or Hb < 8 g/dL
- For females: pregnancy, breast feeding
- ACT treatment within the previous 7 days or mefloquine within 2 months
- History of cardiac disease

Recruitment halted- January 2018

Preliminary conclusions

- Poor efficacy of DHA-piperaquine in Northeastern Thailand, Cambodia and Southwest Vietnam
- Good efficacy of the two Triple ACTs in sites with failing DHA-piperaquine
- Reassuring tolerability and safety so far but more data needed

But.....

Is it already too late?

Emergence of Plasmodium falciparum triple mutant in Cambodia

- Kelch13 C580Y (artemisinin)
- Pfmdr copy no. (mefloquine)
- Plasmepsin2 copy no. (piperaquine)

Figure: Temporal increase in the proportion of Plasmodium falciparum triple mutants

Rossi et al.; Lancet Infectious Diseases, December 2017

Next steps

- Evaluation of artemether-lumefantrine+ amodiaquine in Vietnam/Cambodia
- Development co-blistered triple ACTs
- Large trial focused on safety and tolerability in Africa and Asia
- Development fixed dose TACTs
 - with existing drugs?
 - with new compounds?

Acknowledgements

- Rob van der Pluijm (TRAC 2 coordinator)
- Arjen Dondorp (TRAC2 PI)
- All TRAC2 management team, collaborators and participants
- TRAC 2 was funded by UK DFID
- ISID

Tropical Health Network