

Bring your tablet – individualized antibiotic dosing with interactive case studies

Sebastian G. Wicha, Ph.D.

Junior Professor of Clinical Pharmacy Department of Clinical Pharmacy Institute of Pharmacy University of Hamburg, Germany

> ICID Congress Buenos Aires, 3 March 2018

- Introduction to
 - Therapeutic Drug Monitoring using Pharmacometrics
 - TDMx software as an example of a precision dosing tool
- Interactive case studies with
 - Piperacillin

WiFi for interactive case studies

- Network: Sheraton Convention Center
- Password: ICID2018_guest

Therapeutic Drug Monitoring empowered by PharmacometrX

as an example software for model-based TDM

Therapeutic drug monitoring enhanced by pharmacometrics

 A privilization during the Height Company shares in the particular of the individual pharmacokinetic profile from (few) drug measurements. "Optimal Sampling" module: Protection of o ptimal, most informative sampling time points for future TDM measurements. "Optimal Sampling" module: Prediction of optimal, most informative sampling time points for future TDM measurements. "Advanced options" module: Prediction of pharmacometric model 	 Weight Ray Height Com Sex Does [reg] Mixtain dur. [N] Weight Ray Height Com Sex Does [reg] Mixtain dur. [N] Weight Ray Height Com Weight Ray Height Ray Height Com Weight Ray H		Prediction for typical patient based on entered record/covariates	
 But/Time Creatine (mg/dl) Frediction of a likely effective personalized dosing regimen using the patient covariates without requiring drug measurements "Bayesian Dosing" module: Betermination of the individual pharmacokinetic profile from (few) drug measurements. "Bayesian Dosing" module: Determination of the individual pharmacokinetic profile from (few) drug measurements. "Optimal Sampling" module: Prediction of optimal, most informative sampling time points for future TDM measurements. "Advanced options" module: Diagnostic plots, PK paramters, modification of pharmacometric model 	 • "Probabilistic Dosing" module: Prediction of a likely effective personalized dosing regimen using the patient covariates without requiring drug measurements • "Bayesian Dosing" module: • "Bayesian Dosing" module: Determination of the individual pharmacokinetic profile from (few) drug measurements. • "Optimal Sampling" module: Prediction of optimal, most informative sampling time points for future TDM measurements. • "Advanced options" module: Diagnostic plots, PK paramters, modification of pharmacometric model 	→ Demographics Age [yrs.] Weight [kg] Height [cm] 35 ⊕ 70 ⊕ 170 ⊕ Sex male + + → Dose [mg] Infusion dur. [h] ↓ Image ↓ ↓ ↓ 14/04/2015/06:00 1000 1 ↓ ↓ 14/04/2015/20:00 1000 1 ↓ ↓ 15/04/2015/20:00 1000 1 ↓ ↓ → Dosing interval (for next dose) [h] ↓	30 20 10 0 4pr 14 12:00 Apr 15 00:00 Apr 15 12:00 Apr 16 00:00 Apr 16 12:00	·
 • "Probabilistic Dosing" module: Prediction of a likely effective personalized dosing regimen using the patient covariates without requiring drug measurements • "Bayesian Dosing" module: Determination of the individual pharmacokinetic profile from (few) drug measurements. • "Optimal Sampling" module: Prediction of optimal, most informative sampling time points for future TDM measurements. • "Advanced options" module: Diagnostic plots, PK paramters, modification of pharmacometric model 	 • "Probabilistic Dosing" module: Prediction of a likely effective personalized dosing regimen using the patient covariates without requiring drug measurements • "Bayesian Dosing" module: Determination of the individual pharmacokinetic profile from (few) drug measurements. • "Optimal Sampling" module: Prediction of optimal, most informative sampling time points for future TDM measurements. • "Advanced options" module: Diagnostic plots, PK paramters, modification of pharmacometric model 	24	Date/Time	
		Laboratory Serum creatinine [mg/dL] Time cCreatinine 14/04/2015/13:00 0,7 + - MIC [mg/L] 2 Measured meropenem [mg/L] Time cMeropenem 14/04/2015/13:00 0,8 15/04/2015/13:00 0,8 15/04/2015/14:00 13 + - Protein Binding [%] 2	 "Probabilistic Dosing" module: Prediction of a likely effective personalized dosing regimen using the patient covariates without requiring drug measurements "Bayesian Dosing" module: Determination of the individual pharmacokinetic profile from (few) drug measurements. "Optimal Sampling" module: Prediction of optimal, most informative sampling time points for future TDM measurements. "Advanced options" module: Diagnostic plots, PK paramters, modification of pharmacometric model 	

TDMx for Meropenem Disclaimer 1. Patient 2. Probabilistic Dosing 3. Bayesian Dosing 4. Optimise Sampling Advanced Opt. *

TDMx – workflow exemplified by a patient

Patient:	H.S.
Age:	50 years
Weight:	100 kg
Height:	175 cm
Serum creatinine:	0.8 mg/dL
MIC of pathogen:	2 mg/L

Dose recommendation according to drug label: 1000 mg q8h (short-term infusion)

→ Evaluation by TDMx ("Probabilistic Dosing")

99

PK/PD Target (%fT>MIC)

TDMx – workflow: Optimal sampling Determination of T_{>MIC}

→ "Optimal Sampling"-Module

TDMx – workflow: Bayesian Dosing Determination of the individual PK

TDMx – workflow: Bayesian Dosing Determination of the individual PK

TDMx – workflow: Bayesian Dosing Evaluation of alternative dosages

500 mg / 1 h TID 1000 mg / 1 h TID 2000 mg / 1 h TID 10 20 40 -5 10 20 0 0 f%T>MIC = 63.2 f%T>MIC = 36.3 f%T>MIC = 49.8 0 2000 mg / 4 h TID 500 mg / 4 h TID 1000 mg / 4 h TID 10.0 20 4 2 0 Weropenem [mg/L] 7.5 15 -5.0 10 2.5 5 -0.0 0 f%T>MIC = 57 f%T>MIC = 72.4 f%T>MIC = 86.5 1500 mg / 24 h OD 3000 mg / 24 h OD 6000 mg / 24 h OD 4 8 -1 0 0 -1 0 f%T>MIC = 93.4 f%T > MIC = 98.5f%T > MIC = 99.424 12 18 12 18 24 ò 6 12 18 24 6 0 Time [h]

→ "Bayesian-Dosing"-Module

Journal of Antimicrobial Chemotherapy (2005) **56**, 388–395 doi:10.1093/jac/dki243 Advance Access publication 7 July 2005

Population pharmacokinetics and pharmacodynamics of piperacillin/tazobactam in patients with complicated intra-abdominal infection

JAC

Chonghua Li¹, Joseph L. Kuti¹, Charles H. Nightingale¹, Debra L. Mansfield², Adrian Dana² and David P. Nicolau¹*

¹Center for Anti-Infective Research and Development, Hartford Hospital, 80 Seymour Street, Hartford, CT 06102, USA; ²Wyeth Pharmaceuticals, Collegeville, PA 19426, USA

Explore the impact of the patient covariates on PK

- \rightarrow Creatinine Clearance (CL_{CR})
- \rightarrow Body weight

Piperacillin

 Table 2. Piperacillin final population model parameter estimates

	Pharmacokinetic structural model ^a					
Parameter	Population estimate	SE ^b	RSE (%) ^c			
Clearance (L/h)	$CL = \theta_1 + \theta_2 \times CL_{CR}/89$					
θ_1	5.05	1.24	24.55			
θ_2	9.60	1.67	17.40			
interindividual variability	27.7%	0.0169	21.98			
Volume of distribution (L)	$V = \theta_3 \times WT/81.8$					
θ_3	22.3	1.57	7.04			
interindividual variability	25.2%	0.0329	51.65			
Residual error mod	el					
proportional	18.5%	0.0126	36.73			
additive	1.77 mg/L	3.01	96.17			

^aAIC value of the final model was 993.04.

^bSE, standard error of θ_1 , θ_2 and θ_3 ; and standard error of the variance of the interindividual variability and residual errors. ^cRSE, relative standard error.

Therapeutic Drug Monitoring empowered by PharmacometrX

Launch Pad

Connect to TDMx by clicking on the respective drug. The TDMx software program will open in a new browser tab.

ig on the respective drug. The TDMx software program will Antibiotics General ward Piperacillin Gentamicin Amikacin Tobramycin Special Populations Gentamicin in neonates (NeoGent) Gentamicin in peadiatric oncology

Server status message

OK

EVENTS November 2017 TDMx at "CRE reduce - dose optimization workshop" in

Sydney, November 15 2017.

See you there! March 2018

TDMx at the ICID congress in Buenos Aires, Argentina on March 3, 2018. See you there! <u>More info</u>.

NEWS

September 2017

New model: Gentamicin in pediatric oncology patients. For more news, see <u>here</u>.

Serum creatinine [mg/dL]

Measured piperacillin [mg/L]

Serum creatinine [mg/dL]

Measured piperacillin [mg/L]

Measured piperacillin [mg/L]

Measured piperacillin [mg/L]

Advanced Opt. -

A male patient (56 yrs., body weight 85 kg, body height 182 cm) is hospitalized due to a severe hospital-acquired pneumonia and treatment with 'the standard' 4 g piperacillin/0.5 g tazobactam administered as 30 min intravenous infusion every 8 h is planned. Clinical chemistry at admission confirms inflammation (CRP 281 mg/dL) and the serum creatinine level was determined to 0.78 mg/dL.

- Evaluate the standard dosing regimen with TDMx using 'Probabilistic Dosing' and the predefined MIC of 2 mg/L!
 - Explore different target values
 - Conservative *f*T_{>MIC}: 40%
 - Intermediate *f*T_{>MIC}: 80%
 - Aggressive: *f*T_{>MIC}: 99%

Prediction for typical patient based on entered record/covariates

Serum creatinine [mg/dL]

 Time
 cCreatinine

 03/03/2018/13:00
 0.7

 +

MIC [mg/L]

2

Measured piperacillin [mg/L]

 Time
 cPiperacillin

 03/03/2018/13:00

Protein Binding [%]

20

Time [dd/mm/yyyy/hh:mm]

Dose [mg]

Infusion duration [h]

cPiperacillin [mg/L]

TDMx for Piperacillin Disclaimer 1. Patient	2. Probabilistic Dosing	3. Bayesian Dosing	4. Optimise Sampling	Advanced Opt. 🔻	
---	-------------------------	--------------------	----------------------	-----------------	--

40 99				
	BID scenarios	TID scenarios	QID scenarios	Continuous scenarios
ulate	4 g / 0 5 h BID 4 g / 6 h BID	4 g / 0 5 h TID 4 g / 4 h TID	4 g / 0.5 h QID $4 g / 3 h QID$	8 g / 24 h SID 12 g / 24 h SID
				16 g / 24 h SID

PK/PD Target (%fT>MIC) Select dosing re	egimens to be evaluated by probabilistic dosing:			
calculate BID scenario	os TID scenari 4 g / 0.5 h	DS QID scenarios	Continuous scenario	DS

• Explore the impact of MIC on the attainment of the aggressive target. At which MIC value does therapy become likely effective (i.e. PTA >0.9)

• Therapy was initiated with 4g q8h regimen as follows

Dosing time	Dose (mg)	Infusion duration (h)
03/03/2018/06:05	4000	0.5
03/03/2018/14:10	4000	0.5
03/03/2018/22:08	4000	0.5

The following piperacillin concentration were determined
 Sampling time Piperacillin (mg/L)

Sampling time	Piperacillin (m
03/03/2018/15:05	100.9
03/03/2018/16:55	11.4
03/03/2018/18:20	3.8

• MIC of a P. aeruginosa isolate was 1.0 mg/L

Laboratory

Serum creatinine [mg/dL]

Time	cCreatinine
03/03/2018/13:00	0.78
+ - MIC [mg/L]	
1	

Measured piperacillin [mg/L]

Protein Binding [%]

20

• Advanced users: Inspect the results of the Bayesian estimation

	Parameter	Unit	Description	Typical	Individual
1	CL	[L/h]	Drug Clearance	18.80	22.60
2	V1	[L]	Central Volume of Distribution	23.20	20.60
3	Half-life	[h]	Elimination half-life	0.86	0.63
4	%fT>MIC	[%]	Percentage of observation period that unbound drug concentrations exceed the MIC		60.90

- Which regimen provides the highest %T>MIC?
 - 4g infused over 0.5 h three times daily (TID)
 - 4 g infused over 4 h three times daily (TID)
 - 8g infused over 0.5 h three times daily (TID)
 - 4g infused over 0.5 h four times daily (QID)
 - 8 g infused over 24 h once daily (SID)

(total daily dose: 12 g)

(total daily dose: 12 g)

(total daily dose: 24 g)

(total daily dose: 16 g)

(total daily dose: 8 g)

	TDM	x for Piperacillin Disclaimer 1. Patient	2. Probabilistic Dosing	3. Bayesian Dosing	4. Optimise Sampling	Advanced Opt	
PK/PD Target (%fT>MIC)	8D 99	Select dosing regimens to be evaluated by Bayesian do	ising:				
calculate		BID scenarios	TID scenarios 4 g / 0.5 h TID 4 g / 4 8 g / 0.5 h TID	h TID	QID scenarios		Continuous scenarios 8 g / 24 h SID

Т	DMx for Piperacillin Disclaimer	1. Patient 2. Probabilistic Dosing	3. Bayesian Dosing 4. Optimise Sampling	Advanced Opt
PK/PD Target (%fT>MIC)	Select dosing regimens to be evaluated	by Bayesian dosing:		
calculate	BID scenarios	TID scenarios 4 g / 0.5 h TID 4 g / 4 8 g / 0.5 h TID	QID scenarios 4 h TID 4 g / 0.5 h QID	Continuous scenarios 8 g / 24 h SID

- Pharmacometrics is the method of choice to build quantitative relationships between pharmacokinetics and pharmacodynamics
- Pharmacometric techniques can enhance therapeutic drug monitoring and ease dose adjustment
 - No need to wait for steady state
 - More precise dose adjustments than conventional methods
- Consider TDM in
 - Critically-ill/trauma patients
 - Risk settings for high MIC values
- Easy to use software to facilitate bedsite dose adjustments is available

